Limit distribution theory for block estimators in multiple isotonic regression

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inference for Multiple Isotonic Regression

The isotonic regression for two or more independent variables is a classic problem in data analysis. The classical solution involves enumeration of upper sets, which is computationally prohibitive unless the sample size is small. Here it is shown that the solution may be obtained through a single projection onto a convex polyhedral cone. The cone formulation allows an exact test of the null hyp...

متن کامل

Isotonic inverse estimators for nonparametric deconvolution

A new nonparametric estimation procedure is introduced for the distribution function in a class of deconvolution problems, where the convolution density has one discontinuity. The estimator is shown to be consistent and its cube root asymptotic distribution theory is established. Known results on the minimax risk for the estimation problem indicate the estimator to be eecient.

متن کامل

Algorithms for L∞ Isotonic Regression

This paper gives algorithms for determining L∞ weighted isotonic regressions satisfying order constraints given by a DAG with n vertices and m edges. Throughout, topological sorting plays an important role. A modification to an algorithm of Kaufman and Tamir gives an algorithm taking Θ(m log n) time for the general case, improving upon theirs when the graph is sparse. When the regression values...

متن کامل

Learning Theory for Distribution Regression

We focus on the distribution regression problem: regressing to vector-valued outputs from probability measures. Many important machine learning and statistical tasks fit into this framework, including multi-instance learning or point estimation problems without analytical solution such as hyperparameter or entropy estimation. Despite the large number of available heuristics in the literature, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 2020

ISSN: 0090-5364

DOI: 10.1214/19-aos1928